Package 'IVPP'

Title: Invariance Partial Pruning Test
Description: An implementation of the Invariance Partial Pruning (IVPP) approach described in Du, X., Johnson, S. U., Epskamp, S. (2025) The Invariance Partial Pruning Approach to The Network Comparison in Longitudinal Data. IVPP is a two-step method that first test for global network structural difference with invariance test and then inspect specific edge difference with partial pruning.
Authors: Xinkai Du [aut, cre, cph]
Maintainer: Xinkai Du <[email protected]>
License: GPL (>= 3)
Version: 1.1.0
Built: 2025-03-31 07:19:37 UTC
Source: https://github.com/xinkaidupsy/ivpp

Help Index


Generate a (multi-group) panelGVAR model

Description

This function generates a (multi-group) panel GVAR model. Currently generating temporal and contemporaneous networks

Usage

gen_panelGVAR(
  n_node = 6,
  p_rewire_temp = 0.5,
  p_rewire_cont = 0.5,
  n_group = 1
)

Arguments

n_node

an integer denoting the number of nodes

p_rewire_temp

a numeric value between 0-1 denoting the extent of group difference in the temporal network

p_rewire_cont

a numeric value between 0-1 denoting the extent of group difference in the contemporaneous network

n_group

an integer denoting the number of groups

Details

beta can be transposed to obtain the temporal network; PDC is the partial directed correlation matrix, which is a standardized version of temporal network; kappa is the precision matrix denoting conditional (in)dependence, which is a inverse of covariance matrix denoting the (dependence) among variables; kappa can be further standardized to the contemporaneous networks (omega_zeta_within)

Value

A list of beta, PDC, kappa and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du [email protected]

Examples

library(IVPP)
# Generate the network
net_ls <- gen_panelGVAR(n_node = 6,
                        p_rewire_temp = 0.5,
                        p_rewire_cont = 0,
                        n_group = 2)

Generate time-series GVAR model for multiple (heterogeneous) individuals

Description

This function generates time-series GVAR model for multiple individuals that demonstrates difference or simularity. Currently generating temporal and contemporaneous networks

Usage

gen_tsGVAR(n_node = 6, p_rewire_temp = 0.5, p_rewire_cont = 0.5, n_persons = 1)

Arguments

n_node

an integer denoting the number of nodes

p_rewire_temp

a numeric value between 0-1 denoting the extent of individual difference in the temporal network

p_rewire_cont

a numeric value between 0-1 denoting the extent of individual difference in the contemporaneous network

n_persons

an integer denoting the number of individuals to generate tsGVAR for

Details

beta can be transposed to obtain the temporal network; PDC is the partial directed correlation matrix, which is a standardized version of temporal network; kappa is the precision matrix denoting conditional (in)dependence, which is a inverse of covariance matrix denoting the (dependence) among variables; kappa can be further standardized to the contemporaneous networks (omega_zeta_within)

Value

A list of beta, PDC, kappa and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du [email protected]

Examples

library(IVPP)

# Generate the network
net_ls <- gen_tsGVAR(n_node = 6,
                     p_rewire_temp = 0.5,
                     p_rewire_cont = 0,
                     n_persons = 2)

The invariance partial pruning (IVPP) algorithm for panel GVAR models

Description

This function implements the IVPP algorithm to compare networks in the multi-group panelGVAR models. The IVPP algorithm is a two-step procedure that first conducts an global invariance test of network difference and then performs partial pruning for the specific edge-level differences. Currently supports the comparison of temporal and contemporaneous networks.

Usage

IVPP_panelgvar(
  data,
  vars,
  idvar,
  beepvar,
  groups,
  global = TRUE,
  g_test_net = c("both", "temporal", "contemporaneous"),
  net_type = c("saturated", "sparse"),
  partial_prune = FALSE,
  prune_net = c("both", "temporal", "contemporaneous"),
  prune_alpha = 0.01,
  p_prune_alpha = 0.01,
  estimator = "FIML",
  standardize = c("none", "z", "quantile"),
  ncores = 1,
  ...
)

Arguments

data

A data frame containing the long-formatted panel data

vars

A character vector of variable names

idvar

A character string specifying subject IDs

beepvar

A character string specifying the name of wave (time) variable

groups

A character string specifying the name of group variable

global

A logical value default to TRUE. If FALSE, the global invariance test is skipped.

g_test_net

A character vector specifying the network you want to test group-equality on in the global invariance test. Specify "both" if you want to test on both temporal or contemporaneous networks. Specify "temporal" if you want to test only on the temporal network. Specify "contemporaneous" if you want to test only on the contemporaneous network. See the Details section for more information.

net_type

A character vector specifying the type of networks to be compared in the global test. Specify "saturated" if you want to estimate and compare the saturated networks. Specify "sparse" if you want to estimate and compare the pruned networks.

partial_prune

A logical value specifying whether to conduct partial pruning test or not.

prune_net

A character vector specifying the network you want to partial prune on. Only works when partial_prune = TRUE.

prune_alpha

A numeric value specifying the alpha level for the pruning (if net_type = "sparse").

p_prune_alpha

A numeric value specifying the alpha level for the partial pruning (if partial_prune = TRUE).

estimator

A character string specifying the estimator to be used. Must be "FIML"

standardize

A character string specifying the type of standardization to be used. "none" (default) for no standardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution.

ncores

A numeric value specifying the number of cores you want to use to run the analysis. Default to 1.

...

Additional arguments to be passed to the dlvm1 function

Details

The comparison between the fully unconstrained (free) model and tempEq model is a test for group equality in temporal networks. The comparison between fully constrained model (bothEq) and tempEq is a test for group equality in contemporaneous networks. Similarly, the comparison between the free model and contEq model is a test for group equality in contemporaneous networks, and the comparison between bothEq and contEq is a test for group equality in temporal networks.

Author(s)

Xinkai Du Maintainer: Xinkai Du [email protected]

@return A list containing the results of IVPP and networks of all groups.

Examples

library(IVPP)

# Generate the network
net_ls <- gen_panelGVAR(n_node = 6,
                        p_rewire_temp = 0.5,
                        p_rewire_cont = 0.5,
                        n_group = 2)

# Generate the data
data <- sim_panelGVAR(temp_base_ls = net_ls$temporal,
                      cont_base_ls = net_ls$omega_zeta_within,
                      n_person = 200,
                      n_time = 3,
                      n_group = 2,
                      n_node = 6)

# global test on both nets
omnibus_both <- IVPP_panelgvar(data,
                               vars = paste0("V",1:6),
                               idvar = "subject",
                               beepvar = "time",
                               groups = "group",
                               g_test_net = "both",
                               net_type = "sparse",
                               partial_prune = FALSE,
                               ncores = 1)

# global test on temporal
omnibus_temp <- IVPP_panelgvar(data,
                               vars = paste0("V",1:6),
                               idvar = "subject",
                               beepvar = "time",
                               groups = "group",
                               g_test_net = "temporal",
                               net_type = "sparse",
                               partial_prune = FALSE,
                               ncores = 1)

# global test on cont
omnibus_cont <- IVPP_panelgvar(data,
                               vars = paste0("V",1:6),
                               idvar = "subject",
                               beepvar = "time",
                               groups = "group",
                               g_test_net = "contemporaneous",
                               net_type = "sparse",
                               partial_prune = FALSE,
                               ncores = 1)

# partial prune on both networks
pp_both <- IVPP_panelgvar(data,
                          vars = paste0("V",1:6),
                          idvar = "subject",
                          beepvar = "time",
                          groups = "group",
                          global = FALSE,
                          net_type = "sparse",
                          partial_prune = TRUE,
                          prune_net = "both",
                          ncores = 1)

The invariance partial pruning (IVPP) algorithm for idiographic GVAR models

Description

This function implements the IVPP algorithm to compare networks in the multi-group panelGVAR models. The IVPP algorithm is a two-step procedure that first conducts an global invariance test of network difference and then performs partial pruning for the specific edge-level differences. Currently supports the comparison of temporal and contemporaneous networks.

Usage

IVPP_tsgvar(
  data,
  vars,
  idvar,
  dayvar,
  beepvar,
  global = TRUE,
  g_test_net = c("both", "temporal", "contemporaneous"),
  net_type = c("saturated", "sparse"),
  partial_prune = FALSE,
  prune_net = c("both", "temporal", "contemporaneous"),
  prune_alpha = 0.01,
  p_prune_alpha = 0.01,
  estimator = "FIML",
  standardize = c("none", "z", "quantile"),
  ncores = 1,
  ...
)

Arguments

data

A data frame containing the long-formatted panel data

vars

A character vector of variable names

idvar

A character string specifying the IDs of subjects you want to compare

dayvar

A character string specifying the name of day variable

beepvar

A character string specifying the name of variable indicating the measurement number at each day

global

A logical value default to TRUE. If FALSE, the global invariance test is skipped.

g_test_net

A character vector specifying the network you want to test group-equality on in the global invariance test. Specify "both" if you want to test on both temporal or contemporaneous networks. Specify "temporal" if you want to test only on the temporal network. Specify "contemporaneous" if you want to test only on the contemporaneous network. See the Details section for more information.

net_type

A character vector specifying the type of networks to be compared in the global test. Specify "saturated" if you want to estimate and compare the saturated networks. Specify "sparse" if you want to estimate and compare the pruned networks.

partial_prune

A logical value specifying whether to conduct partial pruning test or not.

prune_net

A character vector specifying the network you want to partial prune on. Only works when partial_prune = TRUE.

prune_alpha

A numeric value specifying the alpha level for the pruning (if net_type = "sparse").

p_prune_alpha

A numeric value specifying the alpha level for the partial pruning (if partial_prune = TRUE).

estimator

A character string specifying the estimator to be used. Must be "FIML"

standardize

A character string specifying the type of standardization to be used. "none" (default) for no standardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution.

ncores

A numeric value specifying the number of cores you want to use to run the analysis. Default to 1.

...

Additional arguments to be passed to the dlvm1 function

Details

The comparison between the fully unconstrained (free) model and tempEq model is a test for group equality in temporal networks. The comparison between fully constrained model (bothEq) and tempEq is a test for group equality in contemporaneous networks. Similarly, the comparison between the free model and contEq model is a test for group equality in contemporaneous networks, and the comparison between bothEq and contEq is a test for group equality in temporal networks.

Value

A list containing the results of IVPP and networks of all groups.

Author(s)

Xinkai Du Maintainer: Xinkai Du [email protected]

Examples

library(IVPP)

# Generate the network
net_ls <- gen_tsGVAR(n_node = 6,
                     p_rewire_temp = 0.5,
                     p_rewire_cont = 0.5,
                     n_persons = 2)

# Generate the data
data <- sim_tsGVAR(beta_base_ls = net_ls$beta,
                   kappa_base_ls = net_ls$kappa,
                   # n_person = 2,
                   n_time = 100)

# global test on temporal
omnibus_temp <- IVPP_tsgvar(data,
                            vars = paste0("V",1:6),
                            idvar = "id",
                            g_test_net = "temporal",
                            net_type = "sparse",
                            partial_prune = FALSE,
                            ncores = 1)

# global test on cont
omnibus_cont <- IVPP_tsgvar(data,
                            vars = paste0("V",1:6),
                            idvar = "id",
                            g_test_net = "contemporaneous",
                            net_type = "sparse",
                            partial_prune = FALSE,
                            ncores = 1)

# partial prune on both networks
pp_both <- IVPP_tsgvar(data,
                       vars = paste0("V",1:6),
                       idvar = "id",
                       global = FALSE,
                       net_type = "sparse",
                       partial_prune = TRUE,
                       prune_net = "both",
                       ncores = 1)

Simulate data for a (multi-group) panelGVAR model

Description

This function generates data for the input (multi-group) panelGVAR model

Usage

sim_panelGVAR(
  temp_base_ls,
  beta_base_ls,
  cont_base_ls,
  n_node,
  n_person = 500,
  n_time = 3,
  n_group,
  mean_trend = 0,
  p_rewire_temp = 0,
  p_rewire_cont = 0,
  save_nets = FALSE
)

Arguments

temp_base_ls

a list of temporal networks of all groups

beta_base_ls

a list of beta matrices of all groups

cont_base_ls

a list of contemporaneous networks of all groups

n_node

number of nodes

n_person

an integer denoting the sample size of each group, default to 500

n_time

number of waves, default to 3

n_group

number of groups

mean_trend

a numeric value indicating the extent of mean trends in data, default to 0

p_rewire_temp

a numeric value between 0 and 1 indicating the extent of non-stationarity in temporal networks, default to 0

p_rewire_cont

a numeric value between 0 and 1 indicating the extent of non-stationarity in contemporaneous networks, default to 0

save_nets

a logical value indicating whether to save the data-generating networks, default to FALSE

Value

A list of temporal and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du [email protected]

Examples

library(IVPP)
# Generate the network
net_ls <- gen_panelGVAR(n_node = 6,
                        p_rewire_temp = 0.5,
                        p_rewire_cont = 0,
                        n_group = 3)

# Generate the data
data <- sim_panelGVAR(temp_base_ls = net_ls$temporal,
                      cont_base_ls = net_ls$omega_zeta_within,
                      n_person = 500,
                      n_time = 4,
                      n_group = 3,
                      n_node = 6)

Simulate data for a (multi-group) N = 1 GVAR model

Description

This function generates data for the input (multi-group) N = 1 GVAR model

Usage

sim_tsGVAR(
  temp_base_ls,
  beta_base_ls,
  cont_base_ls,
  kappa_base_ls,
  n_node,
  n_time = 50,
  n_person,
  save_nets = FALSE
)

Arguments

temp_base_ls

a list of temporal networks of all individuals

beta_base_ls

a list of beta matrices of all individuals

cont_base_ls

a list of contemporaneous networks of all individuals

kappa_base_ls

a list of precision matricies of all individuals

n_node

number of nodes

n_time

number of measurements per person, default to 50

n_person

number of individuals to generate data for

save_nets

a logical value indicating whether to save the data-generating networks, default to FALSE

Value

A list of temporal and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du [email protected]

Examples

library(IVPP)
# Generate the network
net_ls <- gen_tsGVAR(n_node = 6,
                     p_rewire_temp = 0.5,
                     p_rewire_cont = 0,
                     n_persons = 3)

# Generate the data
data <- sim_tsGVAR(beta_base_ls = net_ls$beta,
                   kappa_base_ls = net_ls$kappa,
                   # n_person = 3,
                   n_time = 50)